Статистика - Статей: 872588, Изданий: 948

Искать в "Новая философская энциклопедия в 4-х томах..."

Бесконечное





(бесконечность) – философское понятие, обозначающее безграничность и беспредельность как в бытийственном, так и в познавательном смысле. Вопрос о бесконечном возникает на всем протяжении истории культуры в самых разнообразных формах. Одна из самых непосредственных – проблема бесконечности (или конечности) мирового пространства, времени, количества вещей в мире. Сюда же относится и вопрос о возможности бесконечного деления континуума, выделения в нем точек. Наконец, более изощренной логической техники требует обсуждение вопроса о существовании разных «типов» бесконечного. Вопрос о логической и онтологической природе бесконечности, о ее статусе в Боге и в тварном мире получал разные решения и обоснования в философии, истории науки и теологии.
    АКТУАЛЬНАЯ И ПОТЕНЦИАЛЬНАЯ БЕСКОНЕЧНОСТЬ. Русское слово «бесконечное» имеет смысл отрицания: бес-конечное есть не конечное (аналогично и лат. mfinitum). Но это отрицание можно брать двояко: или как частичное отрицание – то, что может превзойти любое конечное, или как полное отрицание – то, что актуально превосходит любое конечное. Уже в схоластике 13–14 вв. (В.Шервуд, В.Хейтесбери) это различие осознается и обозначается (как синкатегорематическая и ка-тегорематическая бесконечность соответственно). Из схоластики же (Григорий из Римини) идет и другое наименование этих двух разных подходов к бесконечному – потенциальная и актуальная бесконечность. Это различение было исходным пунктом и у создателя теории множеств Г. Кантора. Бесконечность, по Кантору, можно брать или как процесс – как увеличение, напр. натуральных чисел, удвоение длины отрезка, либо, наоборот, как уменьшение, деление данного отрезка на все более мелкие части, – или как актуально данное законченное множество (или величину). Бесконечность как процесс не является, по Кантору, бесконечностью в собственном смысле: в каждой фазе этого процесса, хотя и безграничного, мы имеем дело лишь с конечной величиной, а в целом – с переменной конечной величиной. Эта «несобственная бесконечность» и называется потенциальной бесконечностью. Если же мы берем бесконечное множество как нечто целое, актуально данное, не связанное ни с каким процессом, как, напр., в случае, если мы рассматриваем множество всех натуральных чисел или когда мы рассматриваем завершенный результат бесконечного деления отрезка на более мелкие части (как бы ни парадоксально было предположение подобного рассмотрения), в этом случае имеем дело с собственно бесконечным, или с актуальной бесконечностью. Заслугой Кантора была его критика имеющих тысячелетнюю историю аргументов против существования бесконечности, основанных нередко на смешении актуальной и потенциальной бесконечности.
    Таковы были прежде всего аргументы, восходящие к Аристотелю. Так, напр., когда говорилось, что понятие бесконечности противоречиво, т.к., с одной стороны, оно должно представлять собой определенное количество, а с другой – любое количество превосходить, то, как объяснял Кантор, здесь налицо было смешение понятий актуально и потенциально бесконечного. Именно последнее, рассматриваемое как процесс, превосходит любое конечное количество. Если же мы рассматриваем актуально бесконечное множество, то вопрос о его количественной мере и его соотношении с конечными числами должен уже решаться специальным образом.
    БЕСКОНЕЧНОЕ В ИСТОРИИ ФИЛОСОФИИ. Античная мысль в основном рассматривает бесконечное как неоформленное, как не ставшее и, следовательно, несовершенное. В пифагорейском списке противоположностей бесконечное стоит на стороне дурного (злого). Бытие в античной мысли связано с категорией меры и предела. Бесконечное выступает как беспредельное, безграничное, почти не существующее – μὴὄν и потому есть нечто близкое к хаосу, а иногда и отождествляется с ним. Бесконечное сближается у Платона и Аристотеля с категорией материи как бесформенным и в силу этого как бы несуществующим. Бытие вещи доставляется идеей (или формой), которая ограничивает бесконечное, осуществляя «вписывание» вещи в упорядоченное единство Космоса.
    В то же время в античной философии были мыслители, которые более позитивно используют категорию бесконечного. Прежде всего к ним относится Анаксимандр, у которого главным началом космологии служит апейрон (греч. ἄπειρον – букв. без-граничное), из которого возникают и в который возвращаются все вещи (однако по известным фрагментам не совсем ясно, является ли апейрон высшим бытийственным началом или только хаотической смесью основных элементов). Кроме того, здесь нужно назвать атомистов Левкиппа и Демокрита, у которых бесконечное пустое пространство содержит бесконечное количество атомов, образующих бесконечное количество миров. Однако господствующее отношение к бесконечному в античности все же иное. В окончательном виде оно было выражено Аристотелем. Для Аристотеля бесконечное существует только потенциально как возможность безграничного изменения: «Вообще говоря, бесконечное существует таким образом, что всегда берется иное и иное, а взятое всегда бывает конечным, но всегда разным и разным. Так что бесконечное не следует брать как определенный предмет, например, как человека или дом, а в том смысле, как говорится о дне или состязании, бытие которых не есть какая-либо сущность, а всегда находится в возникновении и уничтожении, и хотя оно конечно, но всегда разное и разное» (Физика 206 а, 28–35). Не существует ни актуально бесконечного тела (конечен сам космос), ни бесконечной последовательности причин (т.к. в противном случае, по Аристотелю, отсутствовала бы первоначальная истинная причина движения). Актуально бесконечное не дано ни чувствам, ни уму. Потенциальная бесконечность реализуется у Аристотеля для чисел в направлении возрастания – натуральный ряд, а для величин – в направлении убывания: потенциально бесконечное деление данного отрезка. Античная математика тоже мыслит свои «прямые» и «плоскости» как конечные, хотя и произвольно большие отрезки или куски плоскостей (в отличие от новоевропейской математики, в которой уже с 17 в. начинают рассматривать бесконечные прямые, напр. в проективной геометрии).
    В неоплатонизме не без влияния восточной мистики пробивает себе дорогу новое положительное понимание бесконечного. Переходной ступенью служили здесь философские взгляды Филона Александрийского, давшего эллинистическую транскрипцию библейского понимания Божества. Единое у Плотина, стоящее выше Ума и, следовательно, выше всякой определенности и формы, в частности числа, не может быть названо бесконечным. Но Ум Плотин уже называет бесконечным в следующих смыслах: в смысле его бесконечного могущества, его единства и его самодостаточности. Все сущее оказывается тем самым между двумя бесконечностями: актуальной бесконечностью Ума и потенциальной бесконечностью мэональной материи, лишенной границ и формы и получающей свои определения только через «отражения» совершенств высшего бытия.
    Существенный перелом в отношении бесконечного происходит с утверждением в европейской культуре христианства. Не только христианский Бог в себе оказывается актуально бесконечным, но и творение, в особенности человек как «образ Божий», несет на себе (в различной мере) отпечаток совершенств Творца. Однако это понимание утверждается не сразу. У Оригена еще налицо сильнейшая зависимость от основных постулатов греческой мысли: даже Бог не сможет быть бесконечным, т.к. бесконечное не имеет формы и не мыслимо. По Оригену, высшее совершенство Бога и его конечность необходимо связаны. Но уже Августин задает вопрос: неужели Бог не может мыслить всех чисел (натуральный ряд) разом? Конечность Бога несовместима, по Августину, с божественным достоинством. В отношении же тварного мира сдвиг происходит еще позднее. У Альберта Великого и Фомы Аквинского еще полностью господствуют аристотелевские запреты: в мире не может существовать актуальная бесконечность. Даже точки континуума существуют в нем только потенциально. «Легализация» актуальной бесконечности в тварном мире исторически была связана с обсуждением природы человеческой души, сотворенной по образу Божьему. В какой степени божественные совершенства отразились в человеческой душе? Дунс Скот настаивал, что человеческая душа по своей природе превосходит ту конечность, которая характерна для всего тварного: ведь человеческая душа способна воспринимать божественную благодать, т.е. самого бесконечного Бога. Значит, ей дарована адекватная предмету восприятия бесконечная воспринимающая способность. Еще дальше идут мистики. Экхарт прямо учит, что в глубине человеческой души имеется нетварная божественная «искорка». Как соприродная Богу, эта «искорка», естественно, актуально бесконечна. Подобное понимание образа Божьего прокладывало дорогу пантеизму и не раз осуждалось Католической церковью. Кардинал Николай Кузанский развивает учение о совпадении абсолютного максимума и абсолютного минимума. В рамках этого учения бесконечное, абсолютный максимум становится «адекватной мерой» всех конечных вещей. Понимание соотношения бесконечного и конечного принципиально меняется по отношению к античному толкованию: если для последнего все конечное было актуальным, а бесконечное выступало лишь как потенциальное, то для Кузанца, наоборот, любая конечная вещь выступает как потенциальное ограничение актуально бесконечной божественной возможности – бытия (possest). Аналогично и в рамках пантеизма Спинозы оказывается, что omnis determinatio est negatio (каждое определение есть отрицание): не через предел, не через ограничение бесформенной материи получают вещи свое бытие, а именно от подлежащей бесконечной божественной субстанции, внутри которой самоопределение выступает как частичная негация. Божественная субстанция-природа имеет бесконечные атрибуты, в т.ч. протяженность и длительность. Время же, число и мера являются только конечными, или потенциально бесконечными средствами воображения. В анализе проблемы бесконечного Спиноза предвосхищает подходы к бесконечному у создателя теории множеств Г.Кантора.
    Спекулятивная теология Николая Кузанского служит также основанием представлений и о бесконечности Вселенной. Бог является «основанием» мира: то, что содержится в Боге «в свернутом виде», мир «разворачивает» в пространстве и времени. Пространственная протяженность мира и время его существования не могут быть конечными, потому что они «выражают» бесконечность Бога. Хотя мир не является бесконечным в том же смысле, как и Бог, – мир не есть все, что может быть, – тем не менее его привативная бесконечность (не infinitum, a Indeterminatum) включает в себя бесконечность пространства и времени. Пересмотр Коперником геоцентрической системы и полемический талант Бруно помогают этому тезису Кузанца стать в высшей степени популярным к 18 в.
    Декарт также поддерживал идею беспредельности мира: хотя и «недопустимо рассуждать о бесконечном, но следует просто считать беспредельными вещи, у которых мы не усматриваем никаких границ, – такова протяженность мира, делимость частей материи, число звезд и т.д.» (Первоначала философии, ч. I). Кроме того, по Декарту, бесконечна человеческая воля, являющаяся существенным признаком образа Божьего в человеческом существе. Именно несоответствие конечности человеческого разума и бесконечности воли служит, по Декарту, причиной ложных суждений. На фоне других философов 17 в. Лейбниц выступает как наиболее убежденный защитник существования актуальной бесконечности. Тема бесконечности обсуждалась Лейбницем в разных аспектах. Актуально бесконечно прежде всего количество субстанций – монад – в универсуме. Каждая часть материи представляет собой также актуально бесконечную совокупность монад. Устойчивость агрегатов этих монад связана с особыми принципами их подчинения и с законом предустановленной гармонии. «Всякую часть материи можно представить наподобие сада, полного растений, и пруда, полного рыб. Но каждая ветвь растения, каждый член животного, каждая капля его соков есть опять такой же сад или такой же пруд» (Монадология, 67). В свою очередь каждая монада представляет в своих восприятиях весь бесконечный универсум, бесконечный как в пространстве, так и во времени. Это понимание ведет Лейбница в психологии к формулировке концепции бесконечно-малых («подсознательных») восприятий. В математике же это приводит к особому пониманию структуры пространственного континуума и, наконец, к созданию дифференциального и интегрального исчислений. Лейбницевские идеи в отношении актуальной бесконечности остаются в высшей степени действенными и по существу непревзойденными все последующие три столетия. Несмотря на то что молодой Кант еще всецело разделял лейбницевскую точку зрения в отношении актуальной бесконечности, позже его взгляды резко меняются. В «Критике чистого разума» в силу кантовской философии математики оказываются невозможны ни бесконечное число, ни бесконечная величина. Мир же в отношении своих пространственных и временных характеристик выступает ни как конечный, ни как бесконечный, а как indefmitum – неопределенный. У Фихте, по-своему разрабатывавшего идею Экхарта о причастности человеческого духа к божественной сущности, вся природа выступает уже как бледное отражение истинной бесконечности, заключенной в абсолютном «Я». Фихте учил о становлении нового мира, точнее, целой последовательности миров, но не через катастрофический онтологический разрыв христианской теологии («Второе пришествие»), а в результате органически развивающегося процесса деятельности абсолютного «Я». В этой от века сущей потенциально бесконечной деятельности божественная природа абсолютного «Я» все яснее приходит к осознанию своей актуальной бесконечности. У Гегеля конечное и бесконечное являются лишь двумя терминами в его диалектической триаде. Простое отрицание конечного дает лишь «дурную бесконечность»: никогда не завершающийся переход от одного конечного к другому и представляет собой лишь «долженствование бесконечного». Истинная бесконечность должна диалектически снять оба соотнесенных момента, быть некоторым становлением, которое одновременно есть и самораскрытие. Истинно бесконечен у Гегеля, собственно, Абсолютный дух, который одновременно и актуально бесконечен, и осуществляет свое развитие через мир конечных духов. В 1851 вышла работа "Б.Больцано" «Парадоксы бесконечного», в которой делается попытка опровергнуть традиционные возражения против актуально бесконечного. В ней обсуждались понятия, ставшие в дальнейшем главными и для Кантора: различение потенциальной и актуальной бесконечности, трансфинитного и абсолютного и ряд других.
    В 20 в. философские дискуссии вокруг проблем бесконечности соотносятся с теорией множеств и проблемой оснований математики. Таковы, напр., феноменологический подход к проблемам теории множеств у О.Беккера (Becker О. Mathematische Existenz. Halle, 1927); интерпретация проблем теории множеств как выражения классического конфликта между аристотелевским концептуализмом и платонистской традицией в математике у Л.Брюнсвика (Brunschvicq L. Les étapes de la philosophie mathématique. P., 1922); рассмотрение канторовской иерархии бесконечного на фоне концепции всеединства у Б.П.Вышеславцева (Вышеславцев Б.П. Этика преображенного эроса. М., 1994).
    БЕСКОНЕЧНОСТЬ В МАТЕМАТИКЕ И ЛОГИКЕ. Использование актуальной бесконечности в математике настойчиво стремятся легализовать со 2-й пол. 19 в. В этом процессе большую роль сыграли труды Б.Больцано, К.Вейерштрасса, Р.Дедекинда и в особенности Г.Кантора. В их работах было систематизировано употребление понятия бесконечности в европейской традиции, выделены его основные аспекты и была предложена (Кантором) беспрецедентно дерзкая конструкция «шкалы бесконечностей», ведущая от самых простых типов бесконечности до бесконечности в Боге. Несмотря на то что конструкции Кантора, ставшие основанием всей современной математики, привели к перманентному кризису этого основания, продолжавшемуся весь 20 в., теория множеств представляется зрелым плодом взаимодействия центральных философских тем европейской культурной традиции. Трагические коллизии мысли, связанные с историей т.н. парадоксов теории множеств, представляют собой своеобразное раскрытие и саморазоблачение тех титанических импульсов, которые сыграли существенную роль в становлении новоевропейской науки и цивилизации в 15–17 вв.
    ТЕОРИЯ МНОЖЕСТВ КАНТОРА. Кантор развил определенную технику оперирования с актуально бесконечными множествами и построил определенный аналог понятия количества для бесконечных множеств. Основой этой техники служит понятие взаимно-однозначного соответствия между элементами двух множеств. Говорят, что элементы двух множеств можно поставить во взаимно-однозначное соответствие, если каждому элементу первого множества можно поставить в соответствие элемент второго множества, разным – разные, и при этом каждый элемент второго множества будет соответствовать какому-то элементу первого. Про такие множества говорят, что они эквивалентны, что они имеют одинаковую мощность, или одинаковое кардинальное число. Если же можно доказать, что элементы множества А можно поставить во взаимно-однозначное соответствие с элементами подмножества В1 множества В, а элементы множества В нельзя поставить во взаимнооднозначное соответствие с элементами А, то тогда говорят, что мощность множества В больше мощности множества А.Эти определения применимы и к конечным множествам. В этом случае мощность представляет собой аналог конечных чисел. Но бесконечные множества имеют в этом смысле парадоксальные свойства. Бесконечное множество оказывается эквивалентным своей части, напр. так, как это происходит в т.н. «парадоксе Галилея»:
    1, 2, 3, 4, ..., n, ...
    ↑↑↑↑↑
    2, 4, 6, 8, ..., 2n, ...
    Эти парадоксы были известны давно, и именно они, в частности, служили препятствием для рассмотрения актуально бесконечных множеств. То, что здесь просто сказывается специфика актуально бесконечного, объяснял в «Парадоксах бесконечного» Больцано. Дедекинд считал это свойство актуально бесконечных множеств характеристическим.
    Кантор развивает арифметику кардинальных чисел. Суммой двух кардинальных чисел является мощность объединения соответствующих им множеств, произведением – мощность т.н. множества-произведения двух данных множеств и т.д. Важнейшим оказывается переход от данного множества к множеству-степени, т.е., по определению, к множеству всех подмножеств исходного множества. Кантор доказывает основополагающую для его теории теорему: мощность множества-степени больше мощности исходного множества. Если мощность исходного множества записать через а, то в соответствии с арифметикой кардинальных чисел мощность множества-степени будет 2a, и мы имеем, следовательно, 2a >а.
    Значит, переходя от некоторого бесконечного множества, напр. от множества всех натуральных чисел, имеющего мощность ℵα (обозначение Кантора) к множеству всех подмножеств этого множества, к множеству всех подмножеств этого нового множества и т.д., мы будем получать ряд множеств все более возрастающей мощности. Есть ли какой-то предел этому возрастанию? Ответить на этот вопрос можно, только введя в рассмотрение некоторые дополнительные понятия.
    Оперировать с бесконечными множествами, лишенными всякой дополнительной структуры, вообще говоря, невозможно. Поэтому Кантор ввел в рассмотрение упорядоченные множества, т.е. множества, для любых двух элементов которых определено отношение «больше» > (или «меньше» <). Это отношение должно быть транзитивным: из a < b и b < с следует: а < с. Собственно, наиболее продуктивным для теории множеств является еще более узкий класс множеств: вполне упорядоченные множества. Так называются упорядоченные множества, у которых каждое подмножество имеет наименьший элемент. Вполне упорядоченные множества легко сравнивать между собой: они отображаются одно на часть другого с сохранением порядка. Символы вполне упорядоченных множеств, или ординальные (порядковые) числа, также образуют вполне упорядоченное множество, и для них также можно определить арифметические действия: сложение (вычитание), умножение, возведение в степень. Ординальные числа играют для бесконечных множеств роль порядковых чисел, кардинальные – роль количественных. Множество (бесконечное) определенной мощности можно вполне упорядочить бесконечным числом способов, каждому из которых будет соответствовать свое ординальное число. Тем самым каждому кардиналу (Кантор ввел для обозначения кардиналов «алефы» – первую букву еврейского алфавита с индексами) ℵα будет соответствовать бесконечно много ординалов:
    0 1 2 ... ω0, ω0 + 1 ... ω1... ω2 ... ωn ... ωω0 ... Ω (ординалы)
    0 1 2 ... ℵ0 ... ℵ1 ... ℵ2n …ℵ ω0 … τ («тау»-кардиналы)
    Согласно теоремам теории множеств любой «отрезок» шкалы Ω ординальных чисел, сам как множество вполне упорядоченное, будет иметь больший ординал, чем все заключенные в этом отрезке. Отсюда вытекает, что невозможно рассматривать все Ω как множество, т.к. в противном случае Ω имело бы своим ординалом β, которое больше всех ординалов в Ω, но поскольку последнее содержит все ординалы, т.е. и β, то было бы: β > β (парадокс Бурали – Форти, 1897). Кантор стремился обойти этот парадокс введением (с 1880-х гг.) понятия консистентноcсти. Не любая множественность (Vielheit) есть множество (Menge). Множественность называется консистентной, или множеством, если ее можно рассматривать, как законченное целое. Если же допущение «совместного бытия» всех элементов множественности ведет к противоречию, то множественность оказывается неконсистентной, и ее, собственно, нельзя рассматривать в теории множеств. Такими неконсистентными множествами оказываются, в частности, Ω – множество всех ординальных чисел и τ («тау») – множество всех кардиналов («алефов»). Тем самым мы опять возвращаемся к бесконечности как к процессу. Как пишет математик 20 в. П.Вопенка: «Теория множеств, усилия которой были направлены на актуализацию потенциальной бесконечности, оказалась неспособной потенциальность устранить, а только смогла переместить ее в более высокую сферу» (Вопенка П. Математика в альтернативной теории множеств. – «Новое в зарубежной науке. Математика», 1983, № 31, с. 124.) Это не смущало, однако, самого Кантора. Он считал, что шкала «алефов» поднимается до бесконечности самого Бога и поэтому то, что последняя оказывается математически невыразимой, было для него само сабой разумеющимся: «Я никогда не исходил из какого-либо «Genus supremum» актуальной бесконечности. Совсем наоборот, я строго доказал абсолютное несуществование «Genus supremum» для актуальной бесконечности. То, что превосходит все бесконечное и трансфинитное, не есть «Genus»; это есть единственное, в высшей степени индивидуальное единство, в которое включено все, которое включает «Абсолютное», непостижимое для человеческого понимания. Это есть «Actus Purissimus», которое многими называется Богом» (Meschkowski H. Zwei unveroffentlichte Briefe Georg Cantors. – «Der Mathematilkuntemcht», 1971, № 4, S. 30–34).
    ПАРАДОКСЫ И ТРУДНОСТИ ТЕОРИИ МНОЖЕСТВ. С 90-х гг. 19 в. начинается широкое обсуждение парадоксов теории множеств. Кроме парадокса Бурали – Форти существует парадокс Рассела, вскрывающий сложную логическую природу понятия бесконечного множества. Анализируя канторовскую теорему о множестве-степени, Рассел выделил понятие «множества, которое не является элементом самого себя». Напр., множество всех множеств не будет таковым, а множество натуральных чисел – будет. Однако в отношении множества всех множеств, не являющихся элементами самого себя, мы уже не можем решить, будет ли оно обладать свойством не являться своим элементом или нет. Оба ответа ведут к противоречию. Подобные размышления привели Рассела к выделению предикативных и непредикативных свойств множеств, и построению т.н. теории типов, которую он развивал совместно с Уайтхедом. Можно привести также формулировку парадокса Банаха – Тарского, который хотя и не относится непосредственно к теории множеств, но характеризует ту математику, которая вытекает из этой теории. Парадокс формулируется так: можно разбить шар на конечное число частей, которые можно переставить так, что получатся два шара такого же размера, как и исходный шар.
    Теория множеств оказалась естественным языком для решения стоявшей веками задачи арифметизации континуума. Во 2-й пол. 19 в. было предложено несколько арифметических конструкций действительных чисел (К. Вейерштрасс, Р.Дедекинд, Г.Кантор). Мощность получающихся числовых моделей континуума оказывалась равна 2ℵ0. Кантор предположил, что 2ℵ0 = ℵ1 – наименьшая из мощностей, больших ℵ0 – мощности множества натуральных чисел: {1,2,3,...}. Это утверждение и называется континуум-гипотезой. Но несмотря на пламенную веру Кантора в истинность этого результата, ни ему, ни последующим математикам не удалось доказать этого факта. Более того, в 1963 П.Коэн доказал, что континуум-гипотеза независима от системы аксиом теории множеств Цермело – Френкеля. Другими словами, континуум-гипотеза не может быть ни доказана, ни опровергнута в теории, опирающейся на эту систему аксиом. Философский смысл этих результатов в том, что если мощность континуума равна какому-то «алефу», (не обязательно № 1, т.е. обобщенная континуум-гипотеза), то континуум «конструируется из точек». Сам же Коэн считал, что континуум-гипотеза скорее всего не верна, что континуум «рассматривается как невероятно большое множество, которое дано нам какой-то смелой новой аксиомой и к которому нельзя приблизиться путем какого бы то ни было постепенного процесса построения» (Коэн П. Теория множеств и континуум-гипотеза. М., 1969, с. 282).
    Другой классической проблемой теории множеств является аксиома выбора. Она формулируется следующим образом: дано некоторое, вообще говоря, бесконечное множество множеств. Существует функция, ставящая в соответствие каждому множеству один его элемент (выбирающая из каждого множества по элементу). Несмотря на простоту формулировки аксиомы выбора, трудно представить, как бы можно было ее доказать. В то же время от этой аксиомы зависит большое множество теорем анализа, а в самой теории множеств – доказательство фундаментальной теоремы Цермело о возможности сравнения мощностей различных множеств. Благодаря работам Геделя (1939) и Коэна (1963) было установлено, что аксиома выбора независима от корпуса других аксиом теории множеств Цермело – Френкеля. Вместо аксиомы выбора были предложены альтернативные аксиомы, напр. аксиома детерминированности. При изменении аксиом теории множеств, естественно, меняется и характер математики, построенной на базе этой теории множеств.
    ХРИСТИАНСКАЯ ТЕОЛОГИЯ И ТЕОРИЯ МНОЖЕСТВ. В соответствии с пониманием святых отцов христианский Бог-Троица непостижим в своей сущности, но познается в откровении в своих энергиях. Энергии открывают человеку имена Божии, которые характеризуют Его в отношении к миру. Эти имена – Всемогущий, Всеблагой, Всевидящий и т.п. – характеризуют бесконечную мощь божественных проявлений, рядом с которой все аналогичные тварные свойства оказываются, вообще говоря, конечными. В пантеистических системах божественным оказывается сам мир; различие между трансцендентной сущностью и энергиями игнорируется, и сам мир наделяется бесконечными характеристиками. Так, напр., у Спинозы протяженность и длительность как атрибуты божественной субстанции природы будут бесконечны. Создатель теории множеств Кантор пытался дать и богословское применение своим конструкциям с актуальной бесконечностью (Кантор вообще считал теорию множеств относящейся столько же к метафизике, сколько и к математике).
    Он различал три типа бесконечного: бесконечное в Боге («в уме Бога») – Абсолютное, в тварном мире – Трансфинитное, в уме человека – трансфинитные числа (ординалы). Несмотря на то что в канторовской философии математики критерием научности служила лишь логическая непротиворечивость, для оправдания теории множеств, Кантор нуждался в доказательствах существования трансфинитного (бесконечного в мире). Это не только служило бы опровержению аристотелевской догмы, но и явилось опорой для его программы развертывания новых подходов в физике и химии на основе теории множеств. Кантор пытался толковать известное место из Книги Премудрости Соломона, XI, ст. 21: «Ты все расположил мерою, числом и весом» – как подтверждение существования трансфинитного в мире. «Здесь не стоит in numero finite», – писал Кантор (Meschkowski H. Aus den Briefbuchern Georg Cantor. – «Archive for History of Exact Sciences», 1965, v. 2, N 6, p. 503–519). Кантор также пытался доказать существование трансфинитного в мире как более подобающего бесконечному и всемогущему Богу. Это вызвало справедливую критику католических теологов, обвинявших Кантора в наклонности к пантеизму.
    Литература:
    
Фрагменты ранних греческих философов, ч. 1. М., 1989;
    Николай Кузанский. Об ученом незнании. – Николай Кузанский. Соч. в 2 т., т. 1. М., 1979;
    Бруно Дж. О бесконечности, вселенной и мирах. – В кн.: Он же. Диалоги. М., 1949;
    Лейбниц Г.В. Соч. в 4 т., т. 1. М., 1982;
    Декарт Р. Первоначала философии. – Он же. Соч. в 2 т., т. 1. М., 1989;
    Локк Дж. Опыт о человеческом разумении. – Он же. Соч. в 3 т., т. 1. М., 1985;
    Кант И. Критика чистого разума. – Он же. Соч. в 6 т., т. 3. М., 1964;
    Гегель Г.В.Ф. Наука логики, т. 1. М., 1970;
    Больцано Б. Парадоксы бесконечного. Одесса, 1911;
    Флоренский А. Соч. в 4 т., т. 1. М., 1994;
    Гайденко П.П. Эволюция понятия науки, т. 1–2. М., 1980–87;
    Кантор Г. Труды по теории множеств. М., 1985;
    Дедекинд Р. Непрерывность и иррациональные числа. Одесса, 1923;
    Гедель К. Совместимость аксиомы выбора и обобщенной континуум-гипотезы с аксиомами теории множеств. – «Успехи математических наук», 1948, № 1;
    Френкель Α., Бар-Хиллел И. Основания теории множеств. М., 1966;
    Коэн П. Теория множеств и континуум-гипотеза. М., 1969;
    Dauben J.W. Georg Cantor: His Mathematics and Philosophy of the Infinite. Cambr.–L., 1979.
    B.H.Катасонов
    
    

Еще в энциклопедиях


В интернет-магазине DirectMedia

Новый объяснительный словарь синонимов русского языка: словарь
Новый объяснительный словарь синонимов русского языка: словарь
Апресян В. Ю., Апресян Ю. Д., Бабаева Е. Э., Богуславская О. Ю., Галактионова И. В.