* Данный текст распознан в автоматическом режиме, поэтому может содержать ошибки
142
х—а
ДИФФЕРЕНЦИАЛЬНОЕ
ИСЧИСЛЕНИЕ
Полагая dt < - J - (0,01)
71
х = 1,
Л =0,01,
получим
\Ь„\<
Последнее выражение становится меньше,
чем
(интегральная форма остаточного ч л е н а ) . Ф о р м у л а М а к л о р е н а :
0J5-10 при п—А разложения:
%
поэтому берем четыре -
члена
Ш ..01 = .п 1 + Ш
« 0.0099503.
f i x ) = / ( 0 ) + x f (0) + I j Z ( O ) + r
+
РАСКРЫТИЕ НЕОПРЕДЕЛЕННОСТЕЙ член Е с л и /(а) = < (а) = 0 или / (JC) И < (х) р р одновременно стремятся к бесконеч ности при JC —• а, то Ilm х-а ? W при условии части
fix)
+
где R
n
X
я
-1
(л r n)
D I
• / О - ' (0) + /?„.
1
= —f (Ьх) (остаточный лI в форме Л а г р а н ж а ) ;
X Rn
n
(1
-
в ) *
-
1
(я - 1 ) 1 член
X
/
( я )
(Ьх)
Ilm х - а <р' (X) предела в
fix)
(остаточный
в форме
Кошн);
существования
правой
(интегральная форма остаточного ч л е н а ) . Ф о р м у л ы Т э й л о р а и М а к л о р е н а по з в о л я ю т вычислять п р и б л и ж е н н о значе ния функции f(x) д л я этого сумми руют первые п с л а г а е м ы х правой части и отбрасывают остаточный член R точное значение которого неизвестно. Величина R оценивается путем замены
t nt n
равенства ( правило рас^ O со \ крытия неопределенностей и — ] . 0 оо у В с л у ч а е , когда f (а) = (а) = 0 или когда / (JC) и <р' (х) стремятся при а к бесконечности, то Ilm Г
JT-а
X
Ilm L J ^ l х - а <р' (Jf) д.
(А , если он существует, н т f'ix)
Правило применяется когда ищется предел
/(JC)
и тогда, отношения х к
неизвестного значения / ^ [а + 6 (х—а)] или значения подынтегральной функции максимальным по м о д у л ю значением этих функций, принимаемым ими в про межутке изменения аргумента.
Пример. Вычислить In 1,01 с семью верными десятичными знаками. По формуле Тэйлора:
У^
при
стремлении
аргумента
t
бесконечности, если функции / (x) tp (JC) при этом одновременно стремятся к бесконечности л и б о к н у л ю . Применением э т о г о правила могут быть раскрыты неопределенности видов оо — со так: ^предварительно преобразуем
+!!•(41)+5-(-¾+-+¾о
Так как t изменяется от 0 до ft, то Л — t > 0,
№-ч(х)=
и 0-со
[^Ly -
'•/(JC) (X))
9
^предварительно
преобразуем
так:
f W i M Z W . ^ ) .
0
H
а потому I
Неопределенности вида 0°. 1°°, с о приводятся к предыдущему виду при помощи логарифмирования: е с л и у —
9 ( х )
= / (х) . то I n ^ ~ tp (JC) I n l / ( j r ) | . Если будет найден предел логарифма рас сматриваемой величины, то п о с л е д у ю щ е е потенцирование приведет к раскрытию и этого рода неопределенностей.