Статистика - Статей: 909699, Изданий: 1065

Искать в "Математическая энциклопедия..."

АСИМПТОТИЧЕСКОЕ РАЗЛОЖЕНИЕ





функции - такой ряд



что при любом целом



при - нек-рая заданная "асимптотическая последовательность" при В этом случае пишется также



Если ясно, о какой последовательности идет речь, то в (2) она не указывается.

Разложение (2) наз. асимптотическим разложением в смысле Эрдейи [2]. Разложение вида



где - постоянные, наз. асимптотическим разложением в смысле Пуанкаре. При данной асимптотич. последовательности функций А. р. (3), в отличие от ее разложения (2), однозначно определяется самой функцией . Если (1) имеет место для конечного числа значений

, то говорят об А. р. с точностью до .

Ряды



наз. асимптотическими рядами. Как правило, такие ряды расходятся. Наиболее употребительны асимптотические степенные ряды;соответствующие им А. р. являются А. р. в смысле Пуанкаре. Пример А. р. в смысле Эрдейи:



Понятия А. р. функции и асимптотический ряд были введены А. Пуанкаре (см. [1]) в связи с задачами небесной механики. Частные случаи А. р. были открыты ц применялись еще в 18 в. (см. [2]). Асимптотич. разложения и ряды играют большую роль в различных задачах математики, механики н физики. Это вызвано тем, что многие задачи нельзя решить точно, но удается получить асимптотич. разложения решений. Кроме того, численные методы часто отказывают именно в тех случаях, когда А. р. удается сравнительно просто найти.

Лит.:[1] Н., "Ada Math.", 1886, v. 8, p. 2)5- 344; Г2] Уиттекер Э. Т., Ватсон Д ж. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 1, М., 1963; [3] Erdelyi A., Wyman M., "Arch. Ration. Mech. and Analysis", 1963, v. 14, p. 217-60. М. В. Федорюк.



Еще в энциклопедиях